
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 

regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington 

Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.  

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of 

information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

a. REPORT

Final report on Seedling project: "Suppression of Laser Shot 

Noise Using Laser-Cooled Opto-Mechanical Systems"

14.  ABSTRACT

16.  SECURITY CLASSIFICATION OF:

The goal of this effort was to create squeezed light with intensity fluctuations 15 dB below the shot noise level. 

This goal was to be achieved by integrating ultrasensitive MEMS inside a high finesse optical cavity at cryogenic 

temperatures. While we have not yet demonstrated squeezing, we have overcome what proved to be the most 

challenging technical hurdle: coupling laser light into a high finesse cavity containing an ultrasensitive MEMS at T 

= 5 K. Since this was the major technical novelty in this project, we expect that this device will be able to 

1. REPORT DATE (DD-MM-YYYY)

4.  TITLE AND SUBTITLE

02-11-2010

13.  SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department 

of the Army position, policy or decision, unless so designated by other documentation.

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for Public Release; Distribution Unlimited

UU

9.  SPONSORING/MONITORING AGENCY NAME(S) AND 

ADDRESS(ES)

6. AUTHORS

7.  PERFORMING ORGANIZATION NAMES AND ADDRESSES

U.S. Army Research Office 

 P.O. Box 12211 

 Research Triangle Park, NC 27709-2211

15.  SUBJECT TERMS

Optomechanics, squeezed light, cavity QED

Jack G. E. Harris

Yale University

Office of Sponsored Programs

Yale University

New Haven, CT 06520 -

REPORT DOCUMENTATION PAGE

b. ABSTRACT

UU

c. THIS PAGE

UU

2. REPORT TYPE

Final Report

17.  LIMITATION OF 

ABSTRACT

UU

15.  NUMBER 

OF PAGES

5d.  PROJECT NUMBER

5e.  TASK NUMBER

5f.  WORK UNIT NUMBER

5c.  PROGRAM ELEMENT NUMBER

5b.  GRANT NUMBER

5a.  CONTRACT NUMBER

W911NF-09-1-0015

8720AI

Form Approved OMB NO. 0704-0188

55909-EL-DRP.1

11.  SPONSOR/MONITOR'S REPORT 

NUMBER(S)

10.  SPONSOR/MONITOR'S ACRONYM(S)

    ARO

8.  PERFORMING ORGANIZATION REPORT 

NUMBER

19a.  NAME OF RESPONSIBLE PERSON

19b.  TELEPHONE NUMBER

Jack Harris

203-432-3826

3. DATES COVERED (From - To)

1-Jan-2009

Standard Form 298 (Rev 8/98) 

Prescribed by ANSI  Std. Z39.18

- 31-Mar-2010



Final report on Seedling project: "Suppression of Laser Shot Noise Using Laser-Cooled Opto-Mechanical Systems"

Report Title

ABSTRACT

The goal of this effort was to create squeezed light with intensity fluctuations 15 dB below the shot noise level. This goal was to be achieved 

by integrating ultrasensitive MEMS inside a high finesse optical cavity at cryogenic temperatures. While we have not yet demonstrated 

squeezing, we have overcome what proved to be the most challenging technical hurdle: coupling laser light into a high finesse cavity 

containing an ultrasensitive MEMS at T = 5 K. Since this was the major technical novelty in this project, we expect that this device will be 

able to demonstrate squeezing in a fairly short time.

(a) Papers published in peer-reviewed journals (N/A for none)

(1) J. C. Sankey, C. Yang, B. M. Zwickl, A. E. Jayich, J. G. E. Harris, Strong and tunable nonlinear optomechanical coupling in a low-loss 

system, Nature Physics 6, 707 (2010).

(2) A. Nunnenkamp, K. Børkje, J. G. E. Harris, S. M. Girvin, Cooling and squeezing via quadratic optomechanical coupling, Physical 

Review A 82, 021806(R) (2010).

List of papers submitted or published that acknowledge ARO support during this reporting 

period.  List the papers, including journal references, in the following categories:

(b) Papers published in non-peer-reviewed journals or in conference proceedings (N/A for none)

 2.00Number of Papers published in peer-reviewed journals:

Number of Papers published in non peer-reviewed journals:

(c) Presentations

 0.00

Number of Presentations:  0.00

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

J. C. Sankey, A. M. Jayich, B. M. Zwickl, C. Yang, J. G. E. Harris, Improved position-squared measurements using degenerate cavity 

modes, Proceedings of the XXI International Conference on Atomic Physics, World Scientific (Singapore) (2009).

Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):  1

Peer-Reviewed Conference Proceeding publications (other than abstracts): 

(d) Manuscripts

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts):  0

Number of Manuscripts:  0.00

Patents Submitted

Patents Awarded



Graduate Students

PERCENT_SUPPORTEDNAME

Andrew Jayich  0.50

Cheng Yang  0.42

Ben Zwickl  0.25

 1.17FTE Equivalent:

 3Total Number:

Names of Post Doctorates

PERCENT_SUPPORTEDNAME

Jack Sankey  0.50

 0.50FTE Equivalent:

 1Total Number:

Names of Faculty Supported

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Names of Under Graduate students supported

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

The number of undergraduates funded by this agreement who graduated during this period with a degree in 

science, mathematics, engineering, or technology fields:

The number of undergraduates funded by your agreement who graduated during this period and will continue 

to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:

Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale):

Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for 

Education, Research and Engineering:

The number of undergraduates funded by your agreement who graduated during this period and intend to 

work for the Department of Defense

The number of undergraduates funded by your agreement who graduated during this period and will receive 

scholarships or fellowships for further studies in science, mathematics, engineering or technology fields:

 0.00

 0.00

 0.00

 0.00

 0.00

 0.00

......

......

......

......

......

......

Student Metrics
This section only applies to graduating undergraduates supported by this agreement in this reporting period

The number of undergraduates funded by this agreement who graduated during this period:  0.00......

Names of Personnel receiving masters degrees

NAME

Total Number:



Names of personnel receiving PHDs

NAME

Total Number:

Names of other research staff

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Sub Contractors (DD882)

Inventions (DD882)



Final Report on Seedling Project “Suppression of Laser Shot Noise Using Laser-
Cooled Optomechanical Systems” (Contract #: W911NF-09-1-0015) April 22, 2010 

Jack Harris, Department of Physics, Yale University, New Haven, CT. 
  
Executive Summary: The goal of this effort was to create squeezed light with 

intensity fluctuations 15 dB below the shot noise level. This goal was to be achieved by 
integrating ultrasensitive MEMS inside a high finesse optical cavity at cryogenic 
temperatures. While we have not yet demonstrated squeezing, we have overcome what 
proved to be the most challenging technical hurdle: coupling laser light into a high-
finesse cavity containing an ultrasensitive MEMS at T = 5 K. Since this was the major 
technical novelty in this project, we expect that this device will be able to demonstrate 
squeezing in a fairly short time. 

 
Background: The goal of this effort was to create laser light with intensity 

fluctuations below the shot noise level. This type of light (known as “squeezed” light) 
can improve the performance of optical instruments which are presently limited by 
photon shot noise. Specific theoretical proposals have considered applications for 
squeezed light in laser gyroscopes, trace gas detectors, interferometers, and 
magnetometers. 

To date, squeezed light has been produced only in proof-of-principle experiments, 
and has not yet been applied to any instruments. The present world record for shot noise 
suppression is 10 dB, but achieving this typically requires a full optical table of 
equipment and constant fine tuning. The principle challenge in producing squeezed light 
has been meeting two simultaneous requirements in a single device: strong optical 
nonlinearity (to alter the photon statistics) and low optical absorption (to avoid adding 
quantum noise to the laser beam). In most nonlinear optical materials these two quantities 
are not independent, and typically one must strike a compromise between them. 

The goal of our work has been to use a novel form of optical nonlinearity to 
circumvent this compromise and produce strongly squeezed light (15 dB suppression of 
shot noise). Specifically, we have developed an ultrasensitive MEMS device which is 
coupled via radiation pressure to an optical cavity. This optomechanical device is 
expected to achieve optical nonlinearity because photons in the cavity displace the 
membrane (via radiation pressure), and the displacement of the membrane in turn detunes 
the cavity.  

The resulting intensity-dependent cavity detuning is equivalent to a Kerr-type 
nonlinearity. However this optomechanical device’s nonlinearity is achieved without 
passing the light through a solid medium. As a result, its optical absorption can be much 
lower than in traditional nonlinear devices. This allows the cavity finesse to be increased, 
leading to stronger optical nonlinearity. 

The squeezing performance of such a device has been calculated analytically. These 
calculations indicate that the device’s performance is optimized when the cavity finesse F 
is high, the membrane’s mechanical quality factor Q is high, and the membrane’s 
Brownian motion is small.  

 
Accomplishments During This Seedling Project: To meet these technical 

requirements, we began this seedling project by designing and constructing a high-finesse 



optical cavity that incorporates a micromechanical membrane and is capable of operating 
inside a cryostat.  

Figure 1 shows the basic schematic of the apparatus. The cavity is assembled at 
room temperature and laser light is coupled into the cavity using free space optics. Upon 
cooling from room temperature to the cryostat’s base temperature, thermal contractions 
inevitably cause the cavity to become misaligned. Provided this misalignment is small, it 
can be compensated for by adjusting the room temperature optics on the top of the 
cryostat. The membrane’s alignment to the cavity axis must also be maintained during the 
cool down. This is accomplished through the use of in situ cryogenic translation stages. 

Since the operation of a high-finesse cavity inside a cryostat is a highly non-
standard requirement, at the start of this project (January 2009 – March 2009) we 
conducted several incremental tests of this apparatus’ performance. First we used our 
cryostat to cool a high-finesse cavity without a micromechanical membrane. The purpose 
of this was to test whether we could use free space optics to maintain coupling to the 
optical cavity while it cooled. This test was successful; thermal contractions inside the 
cryostat could be compensated for using the room temperature optics. Figure 2A shows 
measurements of this “empty” cavity’s ringdown at T = 4 K. The cavity finesse 
determined from this data is in good agreement with the value measured at room 
temperature, indicating that the cavity mirrors are essentially unaffected by operation at 
low temperatures. Similar results were achieved with the fridge at T = 0.4 K, and we 
were able to determine that laser powers up to 0.1 mW did not heat the fridge by more 
than a few mK. 

The second incremental test we performed was to measure the membrane’s optical 
absorption. For simplicity, these measurements were performed at room temperature. Our 
previous work had used non-stochiometric SiNx membranes whose absorption 
corresponded to an imaginary index of refraction Im(n) = 2×10-4 (this data is shown on 
the left-hand side of Figure 2B). This absorption, while fairly low, meant that if the 
membrane was placed anywhere but at a node if the intracavity standing wave, the need 
to avoid heating the membrane via optical absorption limited the useable cavity finesse to 
~10,000.   

We had been told by colleagues at Caltech (O. Painter, C. Regal) that stochiometric 
Si3N4 membranes might have much lower absorption, so during this seedling project we 
repeated these measurements with a stochiometric membrane, producing the results on 
the right-hand side of Figure 2B. The cavity’s finesse is modulated by only a few percent 
as the membrane is moved from node to antinode, but since this modulation is not 
sinusoidal, it does not appear to be due to absorption in the membrane (which should be 
proportional to the overlap between the optical standing wave and the membrane). The 
observed modulation of the cavity finesse is believed to be due to the scattering of light 
between different transverse modes. Although such scattering can limit the usable 
finesse, it does not result in heating of the membrane. Based on the data in Figure 2B we 
estimate that Im(n) < 2×10-4 in these stochiometric membranes. These stochiometric 
membranes achieve the same high mechanical quality factor (Q = 1×106) as the 
nonstochiometric membranes. These results are incorporated in a paper which has just 
been accepted for publication in Nature Physics (currently available as 
ArXiv:1002.4158). 



With these preliminary tests conducted, we proceeded to design and build the actual 
device (April 2009 – May 2009). The cryogenic cavity demonstrated in Figure 2A was 
modified to include a membrane, as well as cryogenic translation stages for aligning the 
membrane within the cavity. The final apparatus is shown in Figure 3, which gives both 
an external view of the room temperature optics and an internal view of the device itself. 

In cooling down the modified cavity (which now incorporated the membrane) we 
found that thermal contractions (or other effects) left the cavity too misaligned to be 
corrected using the room temperature optics. This does not require a very large 
misalignment – once the cavity axis has shifted enough that it no longer points out the 1 
cm diameter, 2 m long clear shot tube, it is no longer possible for the room temperature 
optics to couple a laser beam to the cavity.  

The period June 2009 – March 2010 was spent debugging this problem. The 
solution involved a careful redesign of the cryogenic optical setup to minimize 
asymmetry, strains, and dissimilar materials. In early March, we were able to cool down 
our device while maintaining full optical coupling to the cavity and full control over the 
membrane’s position inside the cavity. 

Figure 4 shows a measurement of the cavity’s optical ringdown (taken at T = 5 K) 
with the membrane at a node of the cavity mode (upper panel) and at an antinode (lower 
panel). As expected, the measured cavity finesse varies by ~1%, indicating that the 
membrane is not absorbing an appreciable amount of the intracavity light. 

Figure 5 shows a measurement of the membrane’s mechanical resonance near 523 
kHz. The mechanical Q factor appears low because this data was taken with helium 
exchange gas inside the fridge’s vacuum space. We have since removed the exchange gas 
and have begun characterizing the membrane in vacuum. 

The most recent data we have taken is shown in Figure 6, which plots the 
fluctuations in the intensity of a laser beam reflecting off of the cryogenic 
optomechanical device described above. The goal of this project was to have the 
fluctuations of this beam suppressed below the shot noise level. As described above, we 
have not yet achieved this (mostly owing to the delay in debugging the cryogenic 
operation of the experiment), but with the apparatus working in the last month, we are 
rapidly approaching this goal.  

In Figure 6, the black curve (lowermost) is the detector noise measured in the 
absence of a laser beam. The dashed curve (just above the detector noise) is the expected 
shot noise for the laser power used in the remaining data traces. As can be seen, it is 
above the detector noise and so should be observable. The blue trace in Figure 6 
corresponds to a laser beam which is deliberately detuned from the cavity resonance, and 
so is simply reflected from the front mirror of the cavity without interacting with either 
the cavity or the membrane. This serves a baseline measurement of our laser noise. As 
can be seen, it is roughly an order of magnitude above the expected shot noise. 
Presumably this represents technical noise in our laser; in future measurements this will 
be passively filtered using a reference cavity, which is already assembled and tested in 
our lab. 

The green, gray, and red traces correspond to data taken with the laser locked to the 
cavity resonance (and so interacting with the cavity and the membrane). In the gray  
trace, the membrane is positioned at a node of the intracavity field; as a result, we expect 
it to interact minimally with the laser beam and so to produce very little optomechanical 



effect. In the green and red traces the membrane is displaced slightly from the node, into 
a region where the optical standing wave overlaps more strongly with the membrane. At 
present we have not observed any impact of the membrane’s motion on the laser noise, 
but we are presently working on this. One important issue is that the data in Figure 6 was 
taken with the laser tuned precisely to the cavity resonance, whereas the strongest 
optomechanical effects are expected when the laser is detuned by roughly one linewidth. 

It should be possible to modify the laser detuning and membrane position in situ 
with the present set up. Once this is accomplished and other minor technical issues are 
debugged, we expect to see the membrane’s response suppress the laser noise. We expect 
that this will require a few more months, and that the single greatest technical challenge 
(maintaining optical coupling to the cryogenic cavity) has been overcome during the 
period of this seedling. 

We note that in parallel with these experimental efforts we have collaborated with 
theory colleagues at Yale (Steven Girvin and his group) to consider the possibilities for 
generating squeezed light via different types of optomechanical coupling. We have 
developed a theory for the squeezing produced by a quadratic optomechanical coupling, 
which our devices are capable of realizing (in addition to the usual linear coupling). This 
work has been submitted to Physical Review Letters. 

 
Publications Resulting From This Work: 
 
o Nunnenkamp, K. Børkje, J. G. E. Harris, S. M. Girvin, Cooling and squeezing via 

quadratic optomechanical coupling, ArXiv:1004.2510 (submitted to Physical 
Review Letters, 2010). 

 
o J. C. Sankey, C. Yang, B. M. Zwickl, A. E. Jayich, J. G. E. Harris, Strong and 

tunable nonlinear optomechanical coupling in a low-loss system, 
ArXiv:1002.4158 (submitted to Nature Physics, 2010). 

 
Copies of each of these papers are attached to this report. 
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FIGURE 1: Schematic of a cryogenic high-finesse 
cavity with an integrated micromechanical 
membrane. Laser light is coupled into the cavity 
from room temperature via free space optics.

350 mK stage 
of 3He fridge

clear shot tube



FIGURE 2: Preliminary characterization
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Figure 2A: Optical ringdown of an empty 
cavity (i.e., without a membrane) inside 
our cryostat at T = 4K. The fit is to a 
single exponential and returns a value for 
the finesse of 71,000, equivalent to the 
value measured at room temperature.

Figure 2b: Comparison of absorption for a nonstochiometric membrane (left panel) and a stochiometric 
membrane (left panel). The nonstochiometric membrane absorbs strongly whenever it is away from a node of 
the intracavity standing wave (arrows), resulting in a strong decrease of the cavity finesse. The dashed line 
shows the cavity finesse when the membrane is removed. The solid line is a fit to the data and gives Im(n) = 2 
×10-4. Stochiometric membranes, by contrast, absorb very little light (right panel). For this measurement the 
empty cavity finesse was 50,000. The small modulations in the finesse reflect scattering between transverse 
modes, not absorption.

stochiometricNon-stochiometric



cavity

piezo stages

300 mK plate

1 m 10 cm

Figure 3: The experimental cryostat. Left: photograph of the exterior of the cryostat (blue). An optical 
breadboard (black) is mounted to the top of the cryostat, allowing laser light to be aligned down the cryostat’s 
clear-shot tubes. The laser light is delivered to the cryostat via optical fibers (yellow). Right: photograph of the 
interior of the cryostat, showing the 3He cold plate (gold), the cavity, and the piezoelectric translation stages 
which allow the membrane to be positioned within the cavity in situ.
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Figure 4: Optical ringdown of the cavity containing 
a membrane at T = 5 K. Upper panel: ringdown 
with the membrane at a node of the optical 
standing wave. The red curve is a fit to a single 
exponential giving a cavity finesse 80,000. Lower 
panel: ringdown with the membrane at an antinode 
of the optical standing wave. The red curve is a fit 
to a single exponential giving a cavity finesse 
80,000. 

Figure 5: Measurement of the mechanical 
resonance of the membrane inside the cavity at T 
= 5 K. The low quality factor is due to the fact that 
this data was taken with helium exchange gas 
inside the fridge.
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Figure 6: Preliminary measurement of laser noise reflected from a cryogenic (T = 5 K) optomechanical 
cavity. The expected shot noise (dashed line) is well above the detector dark noise (black). However it is 
at present obscured by technical noise from the laser (blue). Tuning the laser onto resonance with the 
optomechanical cavity (gray, green, and red) produces small changes in the observed noise, but 
substantial optimization of the input laser noise as well as laser power and detuning relative to the cavity 
remains to be done in the near term.
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Abstract

A major goal in optomechanics is to observe and control quantum behavior in a system

consisting of a mechanical resonator coupled to an optical cavity. Work towards this goal has

focused on increasing the strength of the coupling between the mechanical and optical degrees

of freedom; however, the form of this coupling is crucial in determining which phenomena can

be observed in such a system. Here we demonstrate that avoided crossings in the spectrum of an

optical cavity containing a flexible dielectric membrane allow us to realize several different forms

of the optomechanical coupling. These include cavity detunings that are (to lowest order) linear,

quadratic, or quartic in the membrane’s displacement, and a cavity finesse that is linear in (or

independent of) the membrane’s displacement. All these couplings are realized in a single device

with extremely low optical loss and can be tuned over a wide range in situ; in particular, we find

that the quadratic coupling can be increased three orders of magnitude beyond previous devices.

As a result of these advances, the device presented here should be capable of demonstrating the

quantization of the membrane’s mechanical energy.

Nearly all optomechanical systems realized to date can be characterized by a linear relationship

1



between the optical cavity’s detuning ω(x) and the displacement of the mechanical element x.1

In the classical regime this “linear” optomechanical coupling has enabled powerful laser cooling

and sensitive displacement readout of the mechanical element.2–7 As ω′ ≡ ∂ω/∂x increases this

linear coupling becomes stronger, and it should become possible to observe quantum effects such

as laser-cooling to the mechanical ground state,8,9 quantum-limited measurements of force and

displacement,10,11 and the production of squeezed light.12 In the quantum regime, however, the

form of the optomechanical coupling plays a crucial role in determining which phenomena are

observable. For example, linear coupling provides a continuous readout of x, and so precludes a

direct measurement of one of the most striking features associated with the quantum regime: the

quantization of the mechanical oscillator’s energy.

One device that has demonstrated a nonlinear optomechanical coupling consists of a thin dielec-

tric membrane placed inside a Fabry-Perot cavity.13 With the membrane positioned at a node (or

antinode) of the intracavity standing wave, ω(x) ∝ x2 to lowest order. This “quadratic” optome-

chanical coupling is compatible with a quantum nondemolition (QND) readout of the membrane’s

energy Hm = ~ωmnm, where ωm is the membrane’s resonant frequency and nm is the membrane’s

phonon number. Two distinct schemes have been proposed for using this quadratic coupling to

demonstrate the quantization of the membrane’s energy. Both schemes assume the membrane is

laser-cooled to mean phonon number 〈nm〉 < 1. Numerical estimates indicate this level of cooling

should be feasible for the device described here, provided it is pre-cooled cryogenically.8,9

The goal of the first scheme is to monitor nm with resolution sufficient to observe individual

quantum jumps. This is not feasible with the devices demonstrated to date, and would require

substantial improvements to the quadratic coupling strength ω′′ ≡ ∂2ω/∂x2, the membrane’s optical

absorption, and the membrane’s mechanical properties.13

In the second scheme, the laser-cooled membrane would be mechanically driven from the ground

state to a large-amplitude coherent state with 〈nm〉 ≫ 1. The quadratic coupling would then be

used to monitor the membrane’s energy with resolution sufficient to resolve fluctuations ∝
√

〈nm〉

2



corresponding to the shot noise of the membrane’s phonons. Detailed calculations14 show that this

second scheme is considerably less demanding than the first, though it still requires substantial

improvements to ω′′ and the membrane’s optical absorption.

Here we demonstrate an optomechanical device in which ω′′ is increased by at least three orders

of magnitude, while the membrane’s optical absorption is substantially decreased. The device

satisfies the requirements for observing phonon shot noise at a bath temperature T = 300 mK, and

represents substantial progress toward observing individual quantum jumps. The improvement

in ω′′ is achieved by exploiting the full spectrum of the optical cavity’s transverse modes, which

exhibits numerous avoided crossings as a function of the membrane’s position. These crossings were

not considered in previous work, which assumed a one-dimensional model of the cavity and only a

single transverse optical mode.13,15

In addition to increased ω′′, we demonstrate considerable flexibility within a single device: (i)

ω′′ can be varied in situ by adjusting the position and tilt of the membrane; (ii) it is possible to

tune ω′′ to zero, thereby realizing a purely quartic optomechanical coupling ω(x) ∝ x4; (iii) the

gradient of the cavity relaxation κ′ ≡ ∂κ/∂x can be tuned over a wide range or set to zero; and

(iv) cavity modes with different forms of ω(x) (e.g., linear and quadratic) can be simultaneously

addressed using multiple laser frequencies, allowing for simultaneous laser cooling and QND energy

readout. Each type of coupling offers distinct functionality, and together they represent a new set

of tools for observing and controlling quantum effects in optomechanical systems. We find that the

features in the cavity spectrum responsible for these couplings are reproduced by a straightforward

theoretical model, allowing for optimization of future devices.

1 Strong purely-quadratic optomechanical coupling

Our optomechanical system is shown schematically in Fig. 1a. Two fixed end mirrors (radius

of curvature R = 5 cm) form a Fabry-Perot cavity with free spectral range 2.374 GHz (length

3



L = 6.313 cm) and empty-cavity finesse F = 50, 000. A 1-mm-square flexible Si3N4 membrane

of nominal thickness t = 50 nm and real refractive index Re[n] = 2.0 is placed near the cavity

waist. The membrane is mounted on a motorized stage, providing control over the membrane’s

coarse position along the cavity axis (x̃) as well as its tilt about the two transverse axes (ỹ and z̃).

Piezoelectric transducers allow for nanometer-scale displacements along x̃.

Figure 1b shows the cavity’s transmission spectrum as a function of membrane position x. The

cosine-like detuning curves are similar to those demonstrated previously,13 and achieve ω′′/2π = 30

kHz/nm2 at their extrema. The data in Fig. 1b were taken with the laser coupled to several of the

cavity’s lower-order transverse modes, and a number of apparent crossings between these modes

can be seen. We focus specifically on the region highlighted by the dotted box in Fig. 1b, where

the TEM00 “singlet” and the TEM{20,11,02} “triplet” modes cross. Figure 1c shows this region in

greater detail with the membrane (i) lying in the ỹ-z̃ plane and (ii) tilted by 0.4 mrad about the

z̃-axis. The behavior in Fig. 1c(ii) is ubiquitous among multiplets of higher-order transverse modes:

tilting the membrane lifts the multiplet degeneracy, with modes of greater spatial extent along the

membrane slope (ỹ in this case) perturbed the most.

The central result of this article is illustrated in Fig. 1d, which shows a high-resolution scan

of the region indicated by the dotted box in Fig. 1c. This data demonstrates that the apparent

crossings between the various optical modes are avoided, and that at their anticrossings ω(x) is

purely quadratic with ω′′/2π substantially greater than 30 kHz/nm2. For example, the TEM20

- TEM00 crossing in Fig. 1d shows ω′′/2π = 4.5 MHz/nm2 (dashed white lines). The TEM02 -

TEM00 crossing is not resolved in the main body of Fig. 1d, but the line-scan in the inset shows a

splitting ≈ 200 kHz between these modes. Assuming the crossing is of the usual hyperbolic form

ω(x) = ±
√

(ω′x)2 + ω2
s , where ω

′ is the slope of ω(x) far from the crossing and 2ωs is the gap at

the degeneracy point, the data in the inset indicate ω′′/2π & 30 MHz/nm2, which is three orders

of magnitude greater than previously demonstrated.13

We note that if the membrane is positioned so that two modes realize a quadratic coupling,
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other modes will still realize a linear coupling. In Fig. 1d this occurs at the position x = 0 nm:

here the eigenmodes formed by the TEM02 and TEM00 modes exhibit quadratic coupling while

the TEM11 mode’s coupling is linear. This means that lasers tuned to different eigenmodes can

simultaneously exploit different forms of the optomechanical coupling.

We can understand the origin of these features by noting that avoided crossings generally

reflect a broken symmetry that prevents eigenmodes from becoming degenerate. An ideal empty

Fabry-Perot cavity possesses symmetry that allows degeneracy between transverse modes, but in

our device we expect this symmetry to be broken for two reasons: the curved wavefronts of the

cavity modes may not overlap perfectly with the flat membrane (e.g., if the membrane is tilted

or displaced from the cavity waist), and the empty cavity itself may be slightly asymmetric (e.g.,

owing to imperfect form of the end mirrors).

To make a quantitative analysis of the cavity spectrum and the features in Fig. 1b-d, we devel-

oped a perturbative solution of the Helmholtz equation to calculate the eigenmodes and eigenfre-

quencies of a symmetric optical cavity into which a dielectric slab is placed at an arbitrary location

and tilt. As described elsewhere,16 the empty-cavity eigenfrequencies are perturbed by an amount

proportional to the eigenvalues of the matrix V, where Vi,j ∝
∫∫∫

ψi(x, y, z)ψj(x, y, z) dx dy dz.

Here ψk is the kth unperturbed eigenmode of the cavity and the integral is taken over the volume

of the membrane.

Applying this theory to the four cavity modes of interest (the singlet and triplet modes) quan-

titatively reproduces the large-scale (∼GHz) sinusoidal shape of ω(x) seen in Fig. 1b if we assume

Re[n]= 2.0 and t = 39 nm (black lines). The discrepancy between the fitted and nominal values of t

presumably reflects a combination of fabrication tolerances (∼ 5 nm) and the limits of a first-order

perturbation theory that includes only four eigenmodes. Nonetheless, the intermediate-scale (∼10

MHz) features in Fig. 1c(i-ii), such as the lifting of the triplet’s degeneracy, are also quantitatively

reproduced (Fig. 1c(iii-iv)). Small-scale features such as avoided crossings agree with the model

reasonably well and are discussed below.
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2 Tunability of quadratic coupling

The second result of this article is that ω′′ can be tuned over a wide range by moving the membrane

along the x̃ axis. This tunability is important because in some situations it may be desirable to

decrease ω′′ in order to relax other experimental constraints. For example, if ωs (∝ 1/ω′′) is small

enough the membrane’s motion may result in non-adiabatic transfer of light between the two cavity

modes via Landau-Zener-Stückelberg-like transitions.17

The tunability of ω′′ is illustrated in Fig. 2a-b, which each show six avoided crossings between

the singlet and triplet modes. When the membrane is at the cavity waist (Fig. 2a) the upper gaps

(triangles) are open and the lower gaps (squares) are closed. When the membrane is displaced 500

µm (Fig. 2b) from the waist, the two lower gaps open, the upper right gap opens further, and the

upper left gap closes. The full dependence of ωs on membrane position is shown in Fig. 2c.

The perturbative model (Fig. 2c inset) reproduces the linear dependence of ωs(x) as well as the

slope ∂ωs/∂x measured for each of the six gaps. The model differs from the data by a constant

offset ∼ 3 − 4 MHz for the middle and upper gaps (triangles and crosses in Fig. 2c), which we

attribute to asymmetry in the cavity that is not included in the model. We find below (Fig. 3c)

that it is possible to compensate for this intrinsic asymmetry by adjusting the axis of the membrane

tilt.

3 Tunable coupling between motion and optical relaxation

In addition to creating large ω′′, mixing between the cavity modes also causes the cavity loss rate κ to

vary with x. Figure 3a(i) shows κ(x) for the singlet and triplet modes (the corresponding detunings

are shown in Fig. 3a(ii)). Far from the crossings each cavity mode has a different κ, reflecting the

different overlap between each mode’s transverse profile and the mirrors’ inhomogeneities. At each

avoided crossing the two modes swap their value of κ, leading to a large κ′ ≡ ∂κ/∂x. The dashed

line in Fig. 3a indicates a crossing at which κ′ > 600 kHz/nm.
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Note that this data was taken with the membrane’s tilt axis rotated by 45◦ to (ỹ+ z̃)/
√
2, and

the transverse eigenmodes have followed (inset camera images). The ability to rotate the transverse

mode profiles provides some control over which portions of the mirrors the optical modes sample,

and enables us to tune κ′ in situ. In Fig. 3b we have rotated the membrane tilt axis back to z̃,

with the result that the same crossing shows κ′ = −10 kHz/nm. Significantly, the sign of κ′ has

changed, implying that at an intermediate tilt axis κ′ = 0.

Gradients in κ can have several consequences. A linear variation of κ with x could preclude

a QND measurement of nm, so the ability to tune κ′ to zero is appealing. Separately, it has

been predicted that large values of κ′ can be used to laser cool the membrane to its ground state

even when the device is not in the resolved sideband regime.18 However numerical estimates show

that even with κ′ = 600 kHz/nm, the usual optomechanical coupling8,9 is more promising for

laser-cooling the devices described here.

Variations in κ can also arise from optical absorption in the membrane. Previous measurements

using non-stoichiometric SiNx membranes found that variations in κ were proportional to the

overlap of the intracavity standing wave and the membrane, and were consistent with Im(n) ≈

2 × 10−4 for λ = 1064 nm.15 Subsequent work found lower absorption in stoichiometric Si3N4

membranes, with Im(n) . 10−5 for λ = 985 nm.19 Figure 3c shows κ for the TEM00 mode

(using a Si3N4 membrane and λ = 1064 nm) as x is varied over a few λ. The small-scale (≪ λ)

variations in κ(x) are reproducible and periodic, and presumably arise from mixing with higher-

order modes. To estimate the contribution to κ(x) from absorption in the membrane (as opposed

to mixing with higher-order modes), we extract the Fourier component of κ(x) corresponding to

the overlap between the membrane and the intracavity standing wave. This sets an upper limit of

Im(n) . 1.5× 10−6 at λ = 1064 nm. The lower optical absorption observed here should enable the

use of cavities with higher F while decreasing the quantum noise in the cavity and the heating of

the membrane.
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F ω′′/2π ωm/2π Qm m

Quantum Jumps: 300,000 10 MHz/nm2 100 kHz 1.2× 107 50 pg Σ(0) = 1.1
Phonon Shot Noise: 50,000 0.9 MHz/nm2 1 MHz 1.2× 107 40 ng S = 7.9

Table 1: Comparison of parameters (cavity length L, finesse F , quadratic coupling ω′′, membrane

frequency ωm, quality factor Qm, and mass m) to observe energy quantization in a mechanical

resonator for the two schemes. Both cases assume 5 µW of 1064-nm light incident on a cavity of

length L = 6.313 cm in a 3He cryostat, the membrane positioned within 0.5 pm of the avoided

crossing, and the mechanical motion laser-cooled to nT < 0.2 from a starting temperature T =

300 mK. For the phonon shot noise experiment, the estimate assumes the membrane is driven to 1

nm amplitude of motion.

4 Feasibility of observing mechanical energy quantization

To estimate the feasibility of observing energy quantization in the membrane, we first use the ex-

pressions derived elsewhere13 for Σ(0), the signal-to-noise ratio for measurement of a single quantum

jump. Assuming a single-port cavity,20 we estimate Σ(0) = 1.1 for a device with the parameters

listed in the first row of Table 1. This scheme requires higher finesse and smaller values of m and

ωm (which could be realized by patterning the membrane into a free standing pad supported by

narrow beams), as well as cryogenic pre-cooling to T = 300 mK. The key advances presented in

this paper regarding the realization of this scheme are the demonstration of (i) sufficiently large ω′′

and (ii) sufficiently low optical loss to meet these requirements.

The requirements for observing phonon shot noise in the membrane are described in Ref. [14].

The ratio between the phonon shot noise signal and the measurement imprecision for such a mea-

surement is S = 8n̄mnTΣ
(0), where nT = kBT/~ωm. The parameters listed in the second row of

Table 1 result in S = 7.9. Significantly, these parameters correspond to the device demonstrated

here; the value of ω′′/2π = 0.9 MHz/nm2 corresponds to the lower avoided crossings resolved in Fig.

2b, and the amplitude of the membrane’s motion (x0 = 1 nm) is well below the onset of dynamical
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bistability.21 A quality factor Qm = 1.2× 107 was demonstrated in similar membranes at T = 300

mK.21

5 Purely-quartic optomechanical coupling

The final point of this article is to demonstrate a new type of optomechanical nonlinearity: quartic

(x4) coupling. Figure 4a shows that when the membrane tilt is increased to ∼ 1 mrad, ω(x) for the

TEM20 mode undergoes a smooth transition from ω′′ > 0 (i) to ω′′ < 0 (iii); between these limits

ω′′ = 0 (ii) and ω(x) ∝ x4 to lowest order. A similar transition is visible in the faint background

modes of Fig. 2a and Fig. 4b as a function of mode index.

This form of ω(x) can be used to realize an optomechanical coupling described (in the rotating

wave approximation) by the Hamiltonian term H
(4)
coup = ~ω(4)x4zpfnγn

2
m, with ω(4) ≡ ∂4ω4/∂x4,

xzpf =
√

~/2mωm, and nγ the intracavity photon number. This type of coupling can be used, for

example, to prepare Schrödinger cat states in the membrane.22,23

While the quartic coupling in Fig. 4a is quite weak (ω(4)/2π = 0.4 Hz/nm4), it may be possible

to increase ω(4) using avoided crossings. For example the interaction between the triplet and

quintuplet modes (Fig. 4b) shows avoided crossings in which ω′′ changes sign. In analogy with the

tunability of ω′′ demonstrated in Fig. 2c, we expect that careful arrangement of the membrane tilt

and position will allow some of the crossings in Fig. 4b to be purely quartic with a substantially

larger ω(4).

6 Summary

In summary, we have demonstrated an optomechanical device in which the strength and the form

of the optomechanical coupling can be tuned over a wide range in situ. We have demonstrated

control over whether the optical cavity detuning is (to lowest order) linear, quadratic, or quartic

in the displacement of a micromechanical membrane, and shown that the quadratic coupling is
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three orders of magnitude stronger than previously demonstrated. This device also demonstrates

extremely low optical loss, and an optical loss gradient that can be tuned to zero. These represent

important advances in the ongoing effort to observe and manipulate quantum behavior in a solid

mechanical oscillator.

In particular, the combination of low optical loss and strong quadratic coupling demonstrated

here should enable the observation of the membrane’s energy quantization without further im-

provements to the present device. This combination will also enable other functionalities related

to quadratic coupling, including dispersive QND readout of the intracavity photon number, two-

phonon laser cooling, conditional squeezing between the reflected light and the membrane’s motion,

and various types of passive optical squeezing.15,24

7 Methods

All measurements were performed at room temperature and pressure < 10−5 Torr. The end mirrors

were clamped to an invar spacer, and a mount equipped with three motorized actuators (for tilting

and displacing the membrane) were mounted to this spacer. Two small piezoelectric elements

provided finer positioning of the membrane along the cavity axis. Spectroscopy was performed by

sweeping the frequency of a continuous wave Nd:YAG laser from low from low to high and stepping

the membrane position with the piezo elements. The cavity’s optical loss was measured via cavity

ringdown.
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Figure 1: Avoided crossings in cavity spectra. a Schematic of our setup. b Cavity transmission

as a function of laser detuning and membrane displacement. The membrane is positioned near

the cavity waist, and the input laser is coupled to the lower-order transverse cavity modes. The

transverse modes corresponding to the strongest transmission peaks are labeled. Images of each of

these modes (captured with an infrared camera) are shown. Solid lines show model results. c(i,ii)

Refined scans of the box labeled “c” in a with the membrane (i) aligned and (ii) tilted by 0.4 mrad.

(iii) and (iv) show the corresponding predictions of the model. d Refined scan of the box labeled

“d” in c(ii).
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Cooling and squeezing via quadratic optomechanical coupling
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We explore the physics of optomechanical systems in which anoptical cavity mode is coupled parametrically
to thesquare of the position of a mechanical oscillator. We derive an effective master equation describing two-
phonon cooling of the mechanical oscillator. We show that for high temperatures and weak coupling, the steady-
state phonon number distribution is non-thermal (Gaussian) and that even for strong cooling the mean phonon
number remains finite. Moreover, we demonstrate how to achieve mechanical squeezing by driving the cavity
with two beams. Finally, we calculate the optical output andsqueezing spectra. Implications for optomechanics
experiments with the membrane-in-the-middle geometry or ultracold atoms in optical resonators are discussed.

PACS numbers: 37.30.+i, 42.50.Lc, 42.65.-k, 85.85.+j

Introduction. In optomechanical systems optical and me-
chanical degrees of freedom are coupled via radiation pres-
sure, optical gradient, or photothermal forces. While workin
this area was originally motivated by the goal of building sen-
sitive detectors for gravitational waves [1, 2], the field has be-
come an active area of research in its own right. Its main goal
is to investigate quantum coherence in macroscopic solid-state
devices both for quantum information purposes and gaining
new insights into the quantum-to-classical transition [3,4].

In most optomechanical experiments an optical cavity
mode is parametrically coupled to the position of a mechanical
oscillator. Consequently, many properties of this setup have
been discussed, including red-sideband laser cooling in the
resolved-sideband limit [5, 6], normal-mode splitting [7,8],
optical squeezing [9, 10], backaction-evading measurements
[11–13], mechanical squeezing using either feedback [12, 14],
squeezed light [15] or modulation of input power [16], and en-
tanglement between light and a mechanical oscillator [17].

However, some optomechanical systems feature a quadratic
optomechanical interaction, i.e. an optical cavity mode iscou-
pled parametrically to thesquare of the position of a mechan-
ical oscillator. One example is the membrane-in-the-middle
geometry, in which the membrane is placed at a node or antin-
ode of the cavity field [18–20]. A second system which can
realize quadratic optomechanical coupling is a cloud of ultra-
cold atoms loaded into an optical cavity, where the cloud’s
center-of-mass coordinate serves as the mechanical degreeof
freedom [21]. To date, the theoretical literature has focused
on using the quadratic coupling to detect phonon Fock states
[18, 19, 22–24], but otherwise the possible uses of this form
of optomechanical coupling are largely unstudied.

In this paper we explore three features of quadratic optome-
chanical coupling: two-phonon cooling of the mechanical os-
cillator, squeezing of the mechanical oscillator, and squeez-
ing of the optical output field. Using Fermi’s Golden rule we
first write down an effective master equation for the mechan-
ical oscillator. In the classical limit of large phonon number,
two-phonon cooling processes change the steady-state num-
ber distribution from exponential to Gaussian, a consequence
of the nonlinear damping. In the quantum limit we find that
ground-state cooling is not possible since two-phonon cool-

ing processes preserve the phonon-number parity. We then
demonstrate that the model maps onto a degenerate paramet-
ric oscillator if the cavity is driven by two laser beams whose
frequencies are detuned to either side of the cavity resonance
by an amount equal to the mechanical frequency. This opens
up the possibility of mechanical squeezing. Finally, we cal-
culate the optical output spectrum and find that this system is
capable of producing considerable optical squeezing.

Hamiltonian. We start from the Hamiltonian (with~ = 1)

Ĥ =
(

ωR + gx̂2
) (

â†â− 〈â†â〉
)

+ ωM b̂†b̂+ Ĥγ + Ĥκ (1)

whereωR is the cavity resonance frequency,g the quadratic
optomechanical coupling, and̂x = xZPF(b̂ + b̂†) the posi-
tion of the mechanical oscillator with zero-point fluctuations
xZPF = (2mωM )−1/2, frequencyωM and massm. â and b̂
are annihilation operators obeying bosonic commutation re-
lations. Ĥγ and Ĥκ describe the coupling to the mechan-
ical and optical baths and the optical drive. We have sub-
tracted the steady-state mean photon number〈â†â〉 which
renormalizes the frequency of the mechanical oscillator. The
Hamiltonian (1) is relevant to systems with membrane-in-
the-middle geometry [18], to ultracold atoms in optical res-
onators [21], and double-microdisk whispering-gallery mode
resonators [30] when the first derivative of the cavity disper-
sion relationωcav(x) vanishes, i.e.ω′

cav(x0) = 0, so that
g = ω′′

cav(x0)/2 is the leading order of the optomechanical
coupling.

Expressinĝa = e−iωLt(ā+ d̂) with the laser frequencyωL,
choosinḡa real, and neglectinĝd†d̂ with respect tōa(d̂† + d̂),
we obtain the following quantum master equation

˙̺ = −i
[

ĤS , ̺
]

+ κD[d̂]̺+ γ(1 + nth)D[b̂]̺+ γnthD[b̂†]̺

(2)
with the system Hamiltonian

ĤS = −∆d̂†d̂+ ωM b̂†b̂+ ḡ(b̂+ b̂†)2(d̂† + d̂) (3)

where∆ = ωL − ωR is the detuning,̄g = gāx2
ZPF the cou-

pling, κ andγ the cavity and mechanical damping rates, and
nth the thermal phonon number. We assume that the optical
bath is at zero temperature.D[ô]̺ = ô̺ô† − (ô†ô̺+ ̺ô†ô)/2
denotes the standard dissipator in Lindblad form.
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FIG. 1: Steady-state mean phonon〈b̂†b̂〉 (left) and photon number
〈d̂†d̂〉 (right) as a function of the coupling strengthg/κ and thermal
couplingγ/κ for thermal phonon numbernth = 1, obtained from
the numerical solution of the full quantum master equation (2).

Numerical simulations of the full quantum master equa-
tion. If the cavity is driven on the red two-phonon resonance,
i.e.∆ = −2ωM , in the good-cavity limit, i.e.κ ≪ ωM , we
expect two-phonon cooling processes to be important. Con-
centrating on the resonant terms, i.e.ĤS = ḡ(b̂†b̂†d̂ + h.c.),
we solve the full quantum master equation (2) numerically for
small thermal phonon numbersnth. We find three different
regimes: (i) forγnth ≪ κ the mechanical oscillator is cooled
due to the coupling to the zero-temperature bath of the optical
field [25], (ii) for γnth ≫ κ the optical field is heated by the
coupling to the mechanical oscillator, and (iii) forγnth ≈ κ
both effects are important and the density matrix has non-zero
off-diagonal elements so that e.g. the correlator|〈d̂†b̂b̂〉| is
non-zero. As an example we plot in Fig. 1 the steady-state
mean phonon number〈b̂†b̂〉 and the mean number of photons
due to the coupling to the membrane〈d̂†d̂〉 as a function of the
coupling strength̄g/κ and thermal couplingγ/κ for thermal
phonon numbernth = 1.

Effective master equation describing two-phonon cooling.
For γnth ≪ κ and weak coupling, i.e.̄g ≪ κ, we can em-
ploy a quantum noise approach [25], i.e. we calculate two-
phonon cooling and amplification rates using Fermi’s Golden
rule. Concentrating on the diagonal terms of the density ma-
trix ̺nn = Pn, we write down a set of rate equations

Ṗn = −γ (nth(n+ 1) + (nth + 1)n)Pn

+ γnthnPn−1 + γ(nth + 1)(n+ 1)Pn+1

− (Γ↓n(n− 1) + Γ↑(n+ 2)(n+ 1))Pn

+ Γ↓(n+ 2)(n+ 1)Pn+2 + Γ↑n(n− 1)Pn−2. (4)

The terms in the first two lines are due the coupling of the me-
chanical oscillator to its thermal bath with rateγ and thermal
phonon numbernth. The terms in the last two lines are due
to two-phonon processes whose rates are governed byΓ↓/↑ =
g2x4

ZPFSnn(±2ωM ) whereSnn(ω) = κ|ā|2|χR(ω)|2 is the
photon number spectral density andχR(ω) = [κ/2 − i(ω +
∆)]−1 the cavity response function. We note that nonlinear
damping of a mechanical oscillator was studied in Ref. [26].

The infinite set of rate equations (4) can be replaced
by a single differential equation for the generating function
F (z, t) =

∑∞

n=0 Pn(t)z
n. For vanishing two-phonon ampli-

ficationΓ↑ = 0 the steady-state equation can be solved ex-
actly in terms of the confluent hypergeometric function [27].
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FIG. 2: Steady-state phonon number distributionPn for thermal
phonon numbernth = 107 and forΓ↓ = 0 (dashed) andΓ↓/γ =
4 · 10−7 (solid), respectively.

We point out that it is an advantage of quadratic cooling that
it enables cooling when the membrane or atoms are placed at
a node of the cavity field. In this situation the system is most
insensitive to absorption from the membrane or atoms as well
as to bistability from radiation pressure.

Two-phonon cooling in the classical limit. For large ther-
mal phonon numbernth ≫ 1 and weak two-phonon cooling
γnth ≫ Γ↓ we can replace the quantum operatorsb̂ and d̂
in their Heisenberg equations of motion by complex ampli-
tudesβ = 〈b̂〉 andα = 〈d̂〉 and obtain two coupled clas-
sical Langevin equationṡβ = −γβ/2 − 2iḡβ∗α + ξ and
α̇ = −κα/2− iḡβ2, where the thermal noise is characterized
by 〈ξ(t)ξ∗(t′)〉 = γnthδ(t−t′). Adiabatically eliminating the
optical field we obtain an equation of motion with a nonlinear
damping termβ̇ = −γβ/2 − 4ḡ2|β|2β/κ + ξ. Solving the
corresponding Fokker-Planck equation we obtain the phonon
number distribution

Pn ∝ exp

(

− n

nth

)

exp

(

−Γ↓n
2

γnth

)

. (5)

The distribution changes from an exponential forγ/Γ↓ ≫ nth

to a Gaussian forγ/Γ↓ ≪ nth. In the latter limit the mean
phonon number is given by〈n〉 =

√

γnthκ/πḡ2. The ex-
pression in Eq. (5) agrees with the high-temperature limit of
the exact solution to the rate equations [27]. We conclude that
the change in the steady-state phonon number distribution is a
purely classical effect due to nonlinear damping.

The quadratic coupling in current membrane-in-the-middle
experiments is very small̄g/κ = 10−5. Nonetheless, it leads
to sizable effects if the thermal phonon numbernth is large.
In Fig. 2 we plot the steady-state phonon number distribution
for a thermal phonon numbernth = 107 both in the absence
Γ↓ = 0 and presenceΓ↓/γ = 4 ·10−7 of two-phonon cooling.
We find the Planck distribution with meannth = 107 becomes
a nearly-Gaussian distribution with meannth = 2.8 · 106.

Two-phonon cooling in the quantum limit. Experiments
with ultracold atoms are in the opposite limit with small ther-
mal heating rateγnth and strong optomechanical couplingḡ.
Solving the rate equations (4) in the limit of strong optical
damping, i.e.Γ↓ ≫ γnth, we obtain the phonon number dis-
tributionP0/P1 = 3 + 1/nth with all otherPn = 0 and the
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FIG. 3: (Color online) Mean phonon number〈b̂†b̂〉 as a function of
couplingḡ/κ obtained from the quantum master equation (blue dots)
and the classical rate equations without (red solid) and with strong-
coupling correction (green dashed). The black dashed line indicates
the minimal phonon number̄n0

M given by Eq. (6) fornth = 5.

minimal mean phonon number

n̄0
M =

1

4 + 1
nth

. (6)

The fact that strong cooling leaves both ground and first ex-
cited state occupied is a consequence of the fact that two-
phonon cooling processes preserve the phonon-number parity.

In Fig. 3 we plot the steady-state phonon number〈b̂†b̂〉 as a
function of couplinḡg obtained from the full quantum master
equation (2) and the rate equations (4). The two results show
excellent agreement at weak couplingḡ ≪ κ. As 4ḡ2/κ be-
comes comparable toκ, the Fermi’s Golden rule expression
for two-phonon cooling breaks down and the predictions of
the full master equation (2) and the weak-coupling rate equa-
tions (4) will in general be different. In the limit where only
the Fock states with phonon numbern ≤ 3 are important,
we adiabatically eliminate the off-diagonal terms in the quan-
tum master equation (2) and find that the strong-coupling two-
phonon cooling rates are given by

Γ↓
n,n−2 =

4ḡ2n(n− 1)κ

κ2 + 4ḡ2n(n− 1)
. (7)

In the weak-coupling limit̄g ≪ κ this expression simplifies
to our previous result4ḡ2n(n − 1)/κ. In the limit of strong
couplingḡ ≫ κ, the two-phonon cooling rateΓ↓

n,n−2 remains
finite and cannot exceed the cavity damping rateκ. This leads
to a minimum phonon number which is larger than the one
predicted from the weak-coupling theory. In Fig. 3 we plot the
steady-state mean phonon number obtained from the modified
rate equations and find excellent agreement with the exact so-
lution to the full quantum master equation (2).

We note that for quadratic coupling in the good-cavity limit,
the phonon number distributionPn can be measured by mon-
itoring the phase shift of the reflected light [18, 19, 22].

Squeezing the mechanical oscillator. Driving the cavity at
bothωR ± ωM with equal strength, the classical part of the
cavity field oscillates in timēa = A cosωM t. In the case
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FIG. 4: Optimal squeezing spectrum of the cavity output field
Sout
opt(ω) as a function of detuning∆. The parameters areωm/κ = 5,

ḡ/κ = 0.5, γ/κ = 0.1 andnth = 0.

of linear optomechanical coupling this enables a backaction-
evading measurement of one quadrature of the mechanical os-
cillator [11–13], but does not itself produce squeezing apart
from the one which is conditioned on the measurement out-
come. When we instead consider the same drive applied to
a system with quadratic coupling, moving to an interaction
picture with respect toĤ0 = ωRâ

†â + ωM b̂†b̂ and keep-
ing only non-rotating terms of the quadratic coupling, we ob-
tain the Hamiltonian of the degenerate parametric oscillator,
i.e. ĤDPO = χ

2
(b̂2 + (b̂†)2) with χ = gx2

ZPFA/2.
Solving the linear quantum Langevin equations we see that

the steady-state fluctuations in the quadratureX̂ = (b̂eiωM t+
H.c.)/

√
2 of the mechanical oscillator are squeezed below the

thermal level,〈X̂2〉 = nth+1/2
1+2χ/γ , depending on the ratioχ/γ.

At thresholdχ = γ/2, i.e. before the parametric oscillator
becomes unstable, it is maximal and equal to -3dB [28]. Al-
though the parameters of current membrane-in-the-middle se-
tups show small couplinḡg ≪ κ and large thermal phonon
numbernth ≫ 1, we emphasize that the ratioχ/γ which is
of importance here can still be comparable to unity and lead
to significant noise squashing.

The mechanical squeezing can be detected by coupling the
position of the mechanical oscillator parametrically to a sec-
ond optical mode. This scenario has been studied in Ref. [14].

Output spectrum. Let us now return to the full model (3).
Up to second order in the couplinḡg, the cavity output spec-
trum which is defined asSout

dd (ω) =
∫

dt eiωt〈d̂out(t)d̂†out(0)〉
with d̂out = d̂in+

√
κd̂ and〈d̂in(t)d̂†in(t)〉 = δ(t− t′) is given

by Sout
dd (ω) = 4κḡ2|χR[−ω]|2Sx2x2(ω) where

Sx2x2(ω) =
γ(nth + 1)2

γ2 + (ω − 2ωM )2

+
γn2

th

γ2 + (ω + 2ωM )2
+

2γnth(nth + 1)

γ2 + ω2
. (8)

We see the output spectrumSout
dd (ω) has sidebands atω =

±2ωm andω = 0 as expected for quadratic coupling.
Optical squeezing spectrum. One application of optome-

chanical devices which has been widely advocated [9, 10]
is to use the nonlinear coupling between light and mirror to
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squeeze the incoming coherent light beam, i.e. reduce one of
its quadratures below the shot-noise level at certain frequen-
cies. The quantity which characterizes this noise reduction is
the optical squeezing spectrumSout

θ (ω) given by [29]

Sout
θ (ω) = 1 +

∫ ∞

−∞

dt eiωt〈: X̂out
θ (t), X̂out

θ (0) :〉

= 1 + κ

∫ ∞

−∞

dt eiωtT
[

〈: X̂θ(t), X̂θ(0) :〉
]

(9)

whereX̂out
θ = (d̂†oute

iθ+H.c.)/2, 〈A,B〉 = 〈AB〉−〈A〉〈B〉,
the colons indicate normal ordering andT is the time-ordering
operator [29]. The former expression is useful for calculations
in input-output theory and the latter for master equation sim-
ulations evoking the quantum regression theorem.

In Fig. 4 we plot the optimal squeezing spectrum of the cav-
ity output fieldSout

opt(ω) = minθ S
out
θ (ω) as a function of de-

tuning∆. In the good-cavity limit at zero temperature we find
considerable squeezing atω = 0 andω = 2ωM for∆ = 0 and
∆ = −2ωM , respectively. We choose parametersωm/κ = 5,
ḡ/κ = 0.5, γ/κ = 0.1 andnth = 0, relevant to experiments
with ultracold atoms in optical resonators.

To gain insight beyond numerics we obtain the squeezing
spectrum perturbatively up to second order in the couplingḡ

Sout
opt(ω) = 1 + Sout

dd (ω) + Sout
dd (−ω)

− 8ḡ2κ
∣

∣

∣
χR(ω)χR(−ω)Sx2x2(ω)

−
(

nth +
1

2

)

χ∗
R(ω)χR(−ω) (κχR(ω)− 1)

×
[

1

γ + i(ω − 2ωM )
− 1

γ + i(ω + 2ωM)

]∣

∣

∣

∣

. (10)

As in the case of linear optomechanical coupling [9, 10], we
find two regimes of strong squeezing: for small detuning and
small frequencies as well as for detuning and frequencies
close to twice the mechanical frequency. However, thermal
fluctuations are more destructive for squeezing effects with
quadratic optomechanical coupling due to the quadratic scal-
ing with the thermal phonon numbernth and due to the fact
that the spectrumSx2x2(ω) has weight at zero frequency.

Conclusions. We have explored the physics of nonlinear
optomechanical systems where an optical cavity mode cou-
ples quadratically rather than linearly to the position of ame-
chanical oscillator. For optomechanical experiments withthe
membrane-in-the-middle geometry, we predict a qualitative
change in the phonon number distribution and mechanical
noise squashing. For ultracold atoms in optical resonators, we
found the quantum limit for two-phonon cooling and sizable
mechanical and optical squeezing.
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A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, Phys.
Rev. Lett.98, 030405 (2007).

[18] J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt,
S. M. Girvin, and J. G. E. Harris, Nature (London)452, 72
(2008).

[19] A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D.
Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E.
Harris, New J. Phys.10, 095008 (2008).

[20] J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G.E.
Harris, arXiv:1002.4158.

[21] K. W. Murch, K. L. Moore, S. Gupta, and D. M. Stamper-Kurn,
Nat. Phys.4, 561 (2008).

[22] F. Helmer, M. Mariantoni, E. Solano, and F. Marquardt, Phys.
Rev. A79, 052115 (2009).

[23] H. Miao, S. Danilishin, T. Corbitt, and Y. Chen, Phys. Rev. Lett.
103, 100402 (2009).

[24] A. Clerk, F. Marquardt, and J. Harris, arXiv:1002.3140.
[25] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and

R. Schoelkopf, Rev. Mod. Phys.82, 1155 (2010).
[26] M. Dykman and M. Krivoglaz, Phys. Stat. Sol. (b)68, 111

(1975).
[27] V. V. Dodonov and S. S. Mizrahi, J. Phys. A: Math. Gen.30,

5657 (1997).
[28] G. Milburn and D. F. Walls, Opt. Comm.39, 401 (1981).
[29] D. F. Walls and G. J. Milburn,Quantum Optics (Springer,

2008).
[30] O. Painter, private communication.


